Table of Contents
- DS2413
- Dual Channel Addressable Switch
Dual Switch
3A [.]XXXXXXXXXXXX[XX][/[ PIO.[A|B|ALL|BYTE] | sensed.[A|B|ALL|BYTE] | address
| crc8 | id | locator | r_address | r_id | r_locator | type ]]
3A
read-write, yes-no
State of the open-drain output ( PIO ) pin. 0 = non-conducting (off), 1 =
conducting (on)
.
Writing zero will turn off the switch, non-zero will turn on the switch.
Reading the PIO state will return the switch setting. To determine the actual
logic level at the switch, refer to the sensed property.
ALL references both channels simultaneously, comma separated.
BYTE references both channels simultaneously as a single byte, with channel
A in bit 0.
read-only, yes-no
Logic level at the PIO pin. 0 = ground. 1 = high (~2.4V - 5V ). Really makes
sense only if the PIO state is set to zero (off), else will read zero.
ALL references both channels simultaneously, comma separated.
BYTE references both channels simultaneously as a single byte, with channel
A in bit 0.
read-only, ascii
The entire 64-bit unique ID. Given as upper case hexidecimal digits (0-9A-F).
address starts with the family code
r address is the address in reverse order, which is often used in other
applications and labeling.
read-only, ascii
The 8-bit error correction portion. Uses cyclic redundancy check. Computed
from the preceding 56 bits of the unique ID number. Given as upper case
hexidecimal digits (0-9A-F).
read-only, ascii
The 8-bit family code. Unique to each type of device. Given as upper case
hexidecimal digits (0-9A-F).
read-only, ascii
The 48-bit middle portion of the unique ID number. Does not include the family
code or CRC. Given as upper case hexidecimal digits (0-9A-F).
r id is the id in reverse order, which is often used in other applications
and labeling.
read-only, ascii
Uses an extension of the 1-wire design from iButtonLink company that associated
1-wire physical connections with a unique 1-wire code. If the connection is
behind a Link Locator the locator will show a unique 8-byte number (16 character
hexidecimal) starting with family code FE.
If no Link Locator is between the device and the master, the locator field
will be all FF.
r locator is the locator in reverse order.
read-only,
yes-no
Is the device currently present on the 1-wire bus?
read-only, ascii
Part name assigned by Dallas Semi. E.g. DS2401 Alternative packaging (iButton
vs chip) will not be distiguished.
Use the set_alarm property to
set the alarm triggering criteria.
1-wire is a
wiring protocol and series of devices designed and manufactured by Dallas
Semiconductor, Inc. The bus is a low-power low-speed low-connector scheme where
the data line can also provide power.
Each device is uniquely and unalterably
numbered during manufacture. There are a wide variety of devices, including
memory, sensors (humidity, temperature, voltage, contact, current), switches,
timers and data loggers. More complex devices (like thermocouple sensors)
can be built with these basic devices. There are also 1-wire devices that
have encryption included.
The 1-wire scheme uses a single bus master and
multiple slaves on the same wire. The bus master initiates all communication.
The slaves can be individually discovered and addressed using their unique
ID.
Bus masters come in a variety of configurations including serial, parallel,
i2c, network or USB adapters.
OWFS is a suite of programs that
designed to make the 1-wire bus and its devices easily accessible. The underlying
priciple is to create a virtual filesystem, with the unique ID being the
directory, and the individual properties of the device are represented
as simple files that can be read and written.
Details of the individual
slave or master design are hidden behind a consistent interface. The goal
is to provide an easy set of tools for a software designer to create monitoring
or control applications. There are some performance enhancements in the
implementation, including data caching, parallel access to bus masters,
and aggregation of device communication. Still the fundemental goal has
been ease of use, flexibility and correctness rather than speed.
The
DS2413 (3)
allows control of other devices, like LEDs and relays. It differs
from the DS2405 with a cleaner interface and two channels The DS2413 also
has two channels like the DS2406 and DS2407 but has no memory, and no alarm.
There is also varying types of switch and sensing in the DS2408, DS2409,
LCD, DS276x, DS2450.
Unique among the switches, the DS2413 can switch higher voltages, up to
28V.
All 1-wire devices are factory assigned a unique
64-bit address. This address is of the form:
- Family Code
- 8 bits
- Address
- 48
bits
- CRC
- 8 bits
- Addressing under OWFS is in hexidecimal, of form:
- 01.123456789ABC
where 01 is an example 8-bit family code, and 12345678ABC is an example
48 bit address.
The dot is optional, and the CRC code can included. If included,
it must be correct.
http://datasheets.maxim-ic.com/en/ds/DS2413.pdf
owfs (1)
owhttpd
(1)
owftpd (1)
owserver (1)
owdir (1)
owread (1)
owwrite (1)
owpresent
(1)
owtap (1)
owfs (5)
owtap (1)
owmon (1)
owtcl (3)
owperl (3)
owcapi (3)
DS1427 (3)
DS1904(3)
DS1994
(3)
DS2404 (3)
DS2404S (3)
DS2415 (3)
DS2417 (3)
DS2401 (3)
DS2411 (3)
DS1990A (3)
DS1982 (3)
DS1985 (3)
DS1986 (3)
DS1991 (3)
DS1992 (3)
DS1993 (3)
DS1995 (3)
DS1996 (3)
DS2430A (3)
DS2431 (3)
DS2433 (3)
DS2502
(3)
DS2506 (3)
DS28E04 (3)
DS28EC20 (3)
DS2405 (3)
DS2406 (3)
DS2408
(3)
DS2409 (3)
DS2413 (3)
DS28EA00 (3)
DS1822 (3)
DS1825 (3)
DS1820 (3)
DS18B20 (3)
DS18S20 (3)
DS1920 (3)
DS1921 (3)
DS1821 (3)
DS28EA00
(3)
DS28E04 (3)
EDS0064 (3)
EDS0065 (3)
EDS0066 (3)
EDS0067 (3)
EDS0068
(3)
EDS0071 (3)
EDS0072 (3)
MAX31826 (3)
DS1922 (3)
DS2438 (3)
EDS0065 (3)
EDS0068 (3)
DS2450 (3)
DS2890 (3)
DS2436 (3)
DS2437 (3)
DS2438 (3)
DS2751
(3)
DS2755 (3)
DS2756 (3)
DS2760 (3)
DS2770 (3)
DS2780 (3)
DS2781 (3)
DS2788
(3)
DS2784 (3)
DS2423 (3)
LCD (3)
DS2408 (3)
DS1977
(3)
DS2406 (3)
TAI8570 EDS0066 (3)
EDS0068 (3)
EEEF (3)
DS2438 (3)
http://www.owfs.org
Paul Alfille (paul.alfille@gmail.com)
Table of Contents