Table of Contents
- DS2409
- MicroLAN Coupler
1-wire network branch controller.
1F [.]XXXXXXXXXXXX[XX][/[ aux | branch.[0|1|ALL|BYTE] | control | discharge | event.[0|1|ALL|BYTE]
| clearevent | main | sensed.[0|1|ALL|BYTE] | address | crc8 | id | locator
| r_address | r_id | r_locator | type ]]
1F
directory
This is the aux branch of the DS2409 network branch. It is implicitly accessed
(via the aux smart-on command) when it is listed or devices on this branch
are addressed.
read-only, yes-no
Is the branch ( 0=main or 1=aux ) currently connected to the master bus?
Value returned is 1 (yes) or 0 (no). The DS2409 should not allow both to
be on simultaneously.
ALL is an aggregate of the properties, comma separated. It is an atomic
operation.
BYTE is an aggregate of the branches as a byte, A is bit 0.
read-write,
unsigned integer
Setting of the PIO control pin. There are 4 possible settings:
- Unconditionally
off (non-conducting)
- Unconditionally on (conducting)
- Auto on when main branch
switched in
- Auto on when aux branch switched in
write-only, yes-no
Writing a non-zero value to this property will electrically reset both the
main and auxillary branches of the 1-wire bus by dropping power for 100
milliseconds. All devices on those branches will lose parasitic power and
reset to power-up defaults. As a side effect, both event flags and thus,
the alarm state, are cleared, too.
read-only,
yes-no
Has the event flag for the branch been triggered? A negative edge on the
disconnected branch ( 0=main or 1=aux ) sets the flag. This is achieved
by e.g. connecting an iButton to the branch. Value returned is 1 (yes) or
0 (no). ALL is an aggregate of the properties, comma separated. It is an
atomic operation.
BYTE is an aggregate of the branches as a byte, main is bit 0.
write-only,
yes-no
Writing a non-zero value to this property will reset both event flags and
thus, clear the alarm state, too.
directory
This is the main branch of the DS2409 network branch. It is implicitly accessed
(via the main smart-on command) when it is listed or devices on this branch
are addressed.
read-only, yes-no
Voltage sensed at the 0=main or 1=aux branch pin. Valid only when the branch
is switched out. Value returned is 0 (low) or 1 (high).
ALL is an aggregate of the properties, comma separated. It is an atomic
operation.
BYTE is an aggregate of the branches as a byte, A is bit 0.
read-only, ascii
The entire 64-bit unique ID. Given as upper case hexidecimal digits (0-9A-F).
address starts with the family code
r address is the address in reverse order, which is often used in other
applications and labeling.
read-only, ascii
The 8-bit error correction portion. Uses cyclic redundancy check. Computed
from the preceding 56 bits of the unique ID number. Given as upper case
hexidecimal digits (0-9A-F).
read-only, ascii
The 8-bit family code. Unique to each type of device. Given as upper case
hexidecimal digits (0-9A-F).
read-only, ascii
The 48-bit middle portion of the unique ID number. Does not include the family
code or CRC. Given as upper case hexidecimal digits (0-9A-F).
r id is the id in reverse order, which is often used in other applications
and labeling.
read-only, ascii
Uses an extension of the 1-wire design from iButtonLink company that associated
1-wire physical connections with a unique 1-wire code. If the connection is
behind a Link Locator the locator will show a unique 8-byte number (16 character
hexidecimal) starting with family code FE.
If no Link Locator is between the device and the master, the locator field
will be all FF.
r locator is the locator in reverse order.
read-only,
yes-no
Is the device currently present on the 1-wire bus?
read-only, ascii
Part name assigned by Dallas Semi. E.g. DS2401 Alternative packaging (iButton
vs chip) will not be distiguished.
The DS2409 will respond to a conditional
search if the main event flag is set.
1-wire
is a wiring protocol and series of devices designed and manufactured by
Dallas Semiconductor, Inc. The bus is a low-power low-speed low-connector scheme
where the data line can also provide power.
Each device is uniquely and
unalterably numbered during manufacture. There are a wide variety of devices,
including memory, sensors (humidity, temperature, voltage, contact, current),
switches, timers and data loggers. More complex devices (like thermocouple
sensors) can be built with these basic devices. There are also 1-wire devices
that have encryption included.
The 1-wire scheme uses a single bus master
and multiple slaves on the same wire. The bus master initiates all communication.
The slaves can be individually discovered and addressed using their unique
ID.
Bus masters come in a variety of configurations including serial, parallel,
i2c, network or USB adapters.
OWFS is a suite of programs that
designed to make the 1-wire bus and its devices easily accessible. The underlying
priciple is to create a virtual filesystem, with the unique ID being the
directory, and the individual properties of the device are represented
as simple files that can be read and written.
Details of the individual
slave or master design are hidden behind a consistent interface. The goal
is to provide an easy set of tools for a software designer to create monitoring
or control applications. There are some performance enhancements in the
implementation, including data caching, parallel access to bus masters,
and aggregation of device communication. Still the fundemental goal has
been ease of use, flexibility and correctness rather than speed.
The
DS2409 (3)
allows complex 1-wire network topology. Each branch has it’s power
preserved, even when isolated from the master. A separate PIO pin can be
configured to show branch switching, or controlled explicitly.
All 1-wire devices are factory assigned a unique 64-bit address.
This address is of the form:
- Family Code
- 8 bits
- Address
- 48 bits
- CRC
- 8 bits
- Addressing under OWFS is in hexidecimal, of form:
- 01.123456789ABC
where
01 is an example 8-bit family code, and 12345678ABC is an example 48 bit
address.
The dot is optional, and the CRC code can included. If included,
it must be correct.
http://pdfserv.maxim-ic.com/en/ds/DS2409.pdf
owfs (1)
owhttpd
(1)
owftpd (1)
owserver (1)
owdir (1)
owread (1)
owwrite (1)
owpresent
(1)
owtap (1)
owfs (5)
owtap (1)
owmon (1)
owtcl (3)
owperl (3)
owcapi (3)
DS1427 (3)
DS1904(3)
DS1994
(3)
DS2404 (3)
DS2404S (3)
DS2415 (3)
DS2417 (3)
DS2401 (3)
DS2411 (3)
DS1990A (3)
DS1982 (3)
DS1985 (3)
DS1986 (3)
DS1991 (3)
DS1992 (3)
DS1993 (3)
DS1995 (3)
DS1996 (3)
DS2430A (3)
DS2431 (3)
DS2433 (3)
DS2502
(3)
DS2506 (3)
DS28E04 (3)
DS28EC20 (3)
DS2405 (3)
DS2406 (3)
DS2408
(3)
DS2409 (3)
DS2413 (3)
DS28EA00 (3)
DS1822 (3)
DS1825 (3)
DS1820 (3)
DS18B20 (3)
DS18S20 (3)
DS1920 (3)
DS1921 (3)
DS1821 (3)
DS28EA00
(3)
DS28E04 (3)
EDS0064 (3)
EDS0065 (3)
EDS0066 (3)
EDS0067 (3)
EDS0068
(3)
EDS0071 (3)
EDS0072 (3)
MAX31826 (3)
DS1922 (3)
DS2438 (3)
EDS0065 (3)
EDS0068 (3)
DS2450 (3)
DS2890 (3)
DS2436 (3)
DS2437 (3)
DS2438 (3)
DS2751
(3)
DS2755 (3)
DS2756 (3)
DS2760 (3)
DS2770 (3)
DS2780 (3)
DS2781 (3)
DS2788
(3)
DS2784 (3)
DS2423 (3)
LCD (3)
DS2408 (3)
DS1977
(3)
DS2406 (3)
TAI8570 EDS0066 (3)
EDS0068 (3)
EEEF (3)
DS2438 (3)
http://www.owfs.org
Paul Alfille (paul.alfille@gmail.com)
Table of Contents